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ABSTRACT

The plane elastic problem of a rectangular orthotropic region is
considered; subject to the boundary conditions of prescribed equal and
opposite tangential displacements and zero normal displacements on the
upper and lower edges and zero stresses on the remaining edges. The
effect of the stress-free edges on the stiffness coefficient relating the
tangential displacement and the corresponding shearing force is estimated

in the form of upper and lower bounds for this coefficient.




Effect of Stress-free Edges in Plane Shear
of a Rectangular Orthotropic Region

INTRODUCTION

In what follows we consider the plane problem of a rectangular

elastic region which represents an orthotropic lamina of unit thickness

in plane stress or the cross section of an infinitely long orthotropic pad

in plane strain. The boundary conditions consist of prescribed equal

and opposite tangential and zero normal displacements on the upper

and lower edges and zero tractions on the remaining two edges. Our

objective here is to obtain upper and lower bounds for the stiffness coef-

ficient relating the prescribed tangential displacement to the shear force

JK required to produce this displacement. An elementary approximate solu-

tion to this problem may be obtained by considering a state of pure shear

within the region, which would necessarily exclude the effect of the stress-

free edges. In previous work 1], Read obtained bounds for the stiffness

coefficient including the effect of the stress-free edges in the case of

isotropic materials through the use of the Prager-Synge hypercircle

) method [2]. Our approach here consists in the simultaneous application
_— of the principle of minimum potential energy and the principle of minimum

P complementary energy to bound the stiffness coefficient. These energy

principles have been used previously to obtain bounds for influence coef-
ficients associated with certain two dimensional boundary value problems
in the case of cantilever beams 3] and in the case of cylindrical shells
[4]. Our approach differs from that in [ 1] in the interpretation of the

bounding functionals and generalizes the work in [ 1] by considering

orthotropy and by removing a restriction used in [ 1], that the

thickness to length ratio of the rectangular region is small compared
to unity. The general bound results obtained for the orthotropic case
are specialized to the isotropic case so as to obtain improved numerical

results for the case considered in [1].




We complement our bound calculations by presenting exact
expressions for the stiffness coefficient, through appropriate modification
of previous results of Reissner [5] and Hildebrand [6], in the limiting-
type orthotropic cases for which Young's modulus in the direction normal

to the stressfree edges takes on the values zero or infinity, respectively.

THE BOUNDARY VALUE PROBLEM
We consider a rectangular region with boundaries x = + a and
y =+ c. We assume that the boundary portions y = £+ c are subjected to
uniform displacements +U in the x-direction and that displacements in the
y-direction are prevented. The boundary portions x = + a are assumed
to be traction free.

We have as differential equations for stresses and strains

and therewith as
y = ¢
X +a

We assume the medium to be orthotropic with constitutive

relations

R
‘“ E

. 4
x ’ ’ Y G
X

_0
3 e
E
m

where . =WE E , with E, E, vand G being constants.
m X y X y

For the case of isotropy and plane stress we have

=E =E, v=vand G =1 E/(l + v) (6a)
x Uy

and for the case of isotropy and plane strain the corresponding rclations
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- are
; EszyzE/u -v®), v=v/(] - v)and G =1 E/(] + ). (6b)
* For the strain energy to be positive definite we must have |;|< B
The prescribed edge displacements u(x, #c) = +U are associated
b with forces
Ay
; s 2
P = [ r(x, #c)dx, (7)
at in the form
] P=KU_ (8)
L ,
i
] ‘ with the values of the stiffness coefficient K being the principle objectives
) of the following considerations.
As an elementary approximation we may assume that the elastic
P region is in a state of pure shear, that is,
¥
} = 2 = U ! = = =0
| u="Uy/c, /IGe, v o, oy (9
1 with the corresponding value of the stiffness coefficient being given by
]
K = 2Ga/c. (9)
xa
if UPPER AND LOWER BOUND EXPRESSIONS FOR K
! From the principles of minimum potential energy and minimum
.
E complementary energy we have as inequalities for the work quantity PU,
B! . : T <PU<I (1)
s d
where
-~ a ~ c pa Ei Zvaxgy 3 77
=2 4 -2 —_ - + L (12)
Is U_r_a‘r(x c)dx <j'-c I-a B B + B G dxdy
x m y
-
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and -
‘; =2 urC J‘a {E*?z + Z;E:::? ,_; % E*?’ + G’;?} dxdy (13)
d “dJdec d-a 'x x mxy yy
where
ke a5 % -
YE . E « BEY=tE.. B . E 1=V (14)
x m y x m y

For (11) to be valid the stress components E, 7 must satisfy the
equilibrium equations (1) and the stress boundary conditions (4) and the
strain components ?, '{7 must be derived from displacements q, ¥V which
satisfy the boundary conditions (3).

Substituting for P from (8), equation (1!) becomes a system of

inequalities for K,
IS/U sKgId/U . (15)

In order to obtain upper bounds Ku and lower bounds K’ we

-

consider the set of displacement and stress approximations

E:Uf+(f-§)?z(g)];?=%(l-f:-)n(g) (16)
G, = chuf (6), F =—?U[f1(g) +(% - %:r) fz’(e_)]
(17)
7, -3 5 -4 2)an - X s
where d
¢ =x/a and p -c/a (18)

and where primes indicate differentiation with respect to ¢




1 The expressions in (16) satisfy the displacement boundary
conditions for all choices of F, and F,. The expressions in (20) satisfy
the equilibrium equations (1) for all choices of f; and f,. In order to

- satisfy the stress boundary conditions (4) they must be such that
; : f(x1) = (1) = £2(x1) = 0. (19)
We note that the approximating functions used in [1] are subsets of the

above class of functions.

Obvious symmetries pertaining to the boundary value problem as
stated require that F, and f, must be even functions of ¢ whereas F, and

f, must be odd functions of ¢.

Using (16),(13) and (17) in (12) we obtain, after completing all

S

y-integrations,

K 1 8E*p*
e 2gesdpl s ah pa B /
Ko i z&r_l{l *a i 5 oy 105G KEgi ¥ j2 Sals
¢
|
H 8 VE;TI 4
- o— 2 AN 7\2
155 F,F, +——L3Gp2 F{ %5 (F{) }dg. (20)
] K X
. _—IJI Cp° e - yG ‘
A = =3 l{?_fl-m (f,) -f1+]5 1+5E £, Eg
o = y m
_ i G f2 i(rl)z . 4 Gez(fﬂ)g dE (2])
5 3 Exp2 | L 1575 E " :

{ where Ko = 2Ga/c. It remains to minimize the functional (20) and to
maximize the functional (21). We note that our elementary approximation

| (9) corresponds to the assumption F;, = F, =0 in (16). Furthermore,

from (20) we have K < K .,
u o

e

FIRST APPROXIMATION UPPER AND LOWER BOUNDS

We obtain a relatively simple formula for the upper bound by

4'.\/

setting F5(£) = 0 in the expressions (16) for W and V. Then the upper

I3
E

5
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bound coefficient (20) may be written as

B 4E*

1 4 8 ;
K_u=EI1{1+3F{+E§-é Ff+-g(F1)2}d§- (22)
. ;

Minimization of (22) results in the Euler differential equation

S5E*
e =
1 2Gp? F, =0 (23)
and the Euler boundary conditions
/ oh
F1(il)——4 (24)

where, as stated earlier, F, (¢) is an odd function of £
The minimum value of Ku follows from (22) and (23) as
K
2
L. = L4S F A1 - (25)

K 3
o

The solution of (25) subject to the boundary conditions (24) is,

S sinh Aog/p

Fy = - (26)
4A° cosh Ao/p
where
A, = JSE;/ZG (27)
Using (26) in (25) we obtain the first approximation upper bound,
K A
ul 5
— =1 .2 L apn 2 (28)
K, 6 A, p

We next calculate a lower bound by setting f, = 0 in equation

(17). The lower bound coeffieicnt (2]1) when f = 0 reduces to,

Trp—_ el et i e . . . i
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e

K 1 pl 2
P 5 e

8 ¥

with the constraint conditions £, (£1) = 0. Maximization of (29) results

in the Euler differential equation

3E 3E
” -
£ = —lez e~ —_sza (30)
and in a maximum value of KLI in the form
Ku 1
" ALghe (31)
o
Use of the solution
cosh X _&/p
£, =1 - m/—p— (32)
o
where
>‘o = A/3Ey/G ' (33)

gives the lower bound expression

A
R A N (34)
K p) P

o] o

Having the first approximation bound formulas (28) and (34) we note that
we may approximate the hyperbolic tangent functions by unity for suf-

ficiently large values }0 and Ao' say for Ao. A > 4p, to obtain
o

G AR 5500 - v*
3E L /TE— gt b

Using (6a) and (6b) we obtain in the case of isotropic planc




stress the bound inequality,

1-—-1—-—p&-§s1-‘€—J1-vp (36a)
Jo(1 + v) o

and in the case of plane strain the inequality,

e K J5 fi-2v
B k7

(o}

The bounds given by (36b) are identical to those obtained in .r1].
As important properties of the bound formulas (28) and (34) we note
that a) the effect of the stress free edges is to decrease the stiffness
and b) these first approximation bound coefficients are independent

of the elastic constant Ex.

IMPROVED UPPER AND LOWER BOUNDS
In order to improve the bounds (28) and (34) we next consider
the complete expressions (20) and (21) for Ku and KL. Minimi zation of

(20) with respect to F, and F, gives the Euler differential equations

5 By ] Ve
F{'-35§5F1+-2- ) 4= R, = 0 (37a)
v Ex
gLl G 1 G m
F3 i Erp? F, =5 Eip? (1 == >F1' =0 (37b)
X X

and the Euler boundary conditions

I ;E:::

3 7
Fiias Hetije = o FHBD -2

(38)

Appropriate integrations by parts and use of (37) and (38) enables

us to obtain the minimum value of (20) in the form,




K
u

K
o

2
=0k = El) (39)

Upon solving the system of differential equations (37) subject to

the boundary conditions (38) and substituting for F, (1) in (39) we obtain

AZ - A% A Az
Er2 1 -%e. —————— tanh — tanh — (40)
X

p P

where Ai are the roots with positive real parts of the equation

At -1 7‘.’2) SEY U g m N+ 105 EZ =0 (41)
B T 26 4k 2 E 4 E=*
X X X
and where
G h A? Al
X" G+ vE* [XL (Ao tan e A, tanh 3 )
: m
As B Ay Az
2 P a e it ey
+ x,(AZ tanh 5 A$ tanh 5 )+ x, (Az tanh 5 A; tanh > ):I (42)
with
2\ 2 -
: T7vE P SEJ } Ly ] 5E :
x1 6G 1482 2G AI Az X2 2G AlAz
vEE | 5ES 2R
— y ) o

When Ai/p >4, K _ may be approximated by its asymptotic form,

Kus / e 1 - e ]
—K_’»:"P(Al*l\?), —C-;—Y—l—j-_;;*AlAQJ. (44)

o

Next we proceed to obtain, in a similar fashion, an improved lower




bound for K. However, maximization of the functional (21) as it stands

would require the solution of a sixth order differential equation. In
order to avoid increasing the order of our problem beyond the fourth
we shall in what follows, maximize the expression (21) by assuming
£, (¢) as given by the first approximation calculations. In this way the

resulting Euler differential equation is the fourth order equation,

42E 525E 105E -
fé,” o EP-EY f; AL —E-?Y f2 = - —2—G—sz (l + 5 E_ )f{ ’ (45)
X m

with f/ corresponding to f; in (32).
The constraint conditions on f, in (19) and the differential equation
(45) in conjunction with appropriate integrations by parts enable us to write

the maximum value of the functional (21) in the form

K A .

__éi = ..E_ _2 .1_ _‘ﬁ_ 1 (4

% =1 X tanh = (1 +5 3 )j‘_] Ef b . (46)
o o m

Upon solving the non-homogeneous equation (45) subject to the
appropriate boundary conditions and evaluating the integral in (46), we

obtain as improved lower bound expression

£ -
KL’«’ e i 7 7 )\Ox(l + SVG/Em) R
K, A, B2 - g 4 A%)xz X ke
where Ai are the roots with positive real parts of the equation
Sy '
* . 2 4+ 525 2
A 42 G A Ex o , (48)

and where

X =x Foy o,
(o]




with

= - - 5
%o A p cosh® )\O/P i

202 - 2D
% =q§ - 2302 -2])

(A, tanh )‘o/p - )\o tanh ), /p)(), tanh xo/p - >‘o tanh ), /p)

. (51)

A A\ tanh X;/p - X\ tanh X, /p
When Ai/p > 4, K:,z may be approximated by its asymptotic form,
4 i 2
K{,a o [1 7 )\o(l + 5vG/ Em) ] i
At e 2 2 C
Ko Ao 6 ()\°+)\1) (Ao+)\z)

We note that the asymptotic formulas (35) , (44), and (52) correspond

to the assumption of the existence of boundary layers in the neighborhood

of the edges x = +a. In the expressions for Ku and KL the leading terms
represent the interior solution contribution in the stiffness coefficient
corresponding to a state of pure shear. The remaining terms represent
the boundary layer contributions. Within these boundary layers the
interior shear stress U/Gc undergoes a rapid transition to attain the value
zero at x = +a. The approximate boundary layer thickness obtained in

[1] for the isotropic plane strain case may be generalized to the case of
orthotropy by observing our first approximation solutions. For the
orthotropic case we have from equations (26), (27), (32) and (33) as a

condition for the existence of boundary layers

and the corresponding width bo of these boundary layers is given by

b /e =0 (/G/E.) . (54)
o Y

11




Our improved bound calculations show that there exists an
additional set of boundary layers adjacent to the edges x = +a. We
demonstrate this by considering the characteristic equation (48) cor-
responding to the lower bound calculation which may be considered more
relevent in the context of a boundary layer estimate pertaining to stress
transitions. As conditions for the existence of these additional boundary

layers we have

E I =0 , p<¥YE /E (55)
m y X
1 << Em/G : szEy/G (56)

The widths of these boundary layers are given by

= = 4 i = 1
E /G=0(D , bi/c O(,/'Ex/Ey) ; i o2 (57)
l<< E /G , b,/e =O(JEIG) , bgle=0/G/E ) (58)
m 3 x 2 y

It is apparent from (54), (57), and (58) that there exist two boundary
layers near each stress-free edge, for all values of the parameter Em/ &
As far as the numerical calculation of the bounds is conceried we

may use the asymptotic formulas (35), (44) and (52) whenever,
i ’ -7I ’ \- < 4 » —q‘
Min {Re(/\i )\IJ Ao )‘oj¢ P (5
as these formulas involve the approximation tanh (A, 3)/¢

The roots of the characteristic equations (41) and (48) are in general

complex. As conditions for real roots we must have

G 2 5 1 «,7v® l = ¥ OF v G
— < | = ———= + 35 = e e | (60)
E_ o5 2 1=% 4 EZ 2 E_

for real A, and A, and

G

e (6
E < 1 61)
m

12




| for real ), and ), .
The improved upper (or lower) bound obtained here is not valid
when the equality sign holds in (60) (or in (61)). However, expressions
for the bound coefficients may be deduced from the formula (40) (or (47))

by taking the limit as A; = A, (or ), = Xp).

Isotropic plane stress case. In the case of isotropic plane stress we

use (6a) in (40) and (47) to evaluate the improved bounds. Fig. | shows a
plot of Kul' Kuz' KU" and Kl,l against p = c/a for the plane stress
problem when v = 1/3. The plots show that the exact formulas and the

corresponding asymptotic formulas (linear functions of c/a) are in- |

distinguishable in the range 0 < c/a < 1, with c/a = | representing a
‘\ square lamina. The maximum error in employing the average of the
improved bounds in place of the exact stiffness coefficient comes out |
to be about 0.9% when c/a = 1 and this error is linearly decreasing
with decreasing values of c/a. The corresponding error in using the

first approximation bound expressions comes out to be about 47,

Orthotropic case. In the case of orthotropic materials the bound

e formulas (40) and (47) suggest the use of the parameters
.=G/JE E , p* = J/G/E c/a (62)
Ny g

with u representing the effect of the elastic coefficient Ex. Figs 2

shows plots of Km, Kua' K _and Kl,l against p* when v = 1/3, u = 10,

L2
As p* increases the difference between the upper bound Km and the

exact result becomes significant, although the remaining bounds Ku )
2

K _and K“ are extremely close., We note that for large values of

12

%, if G and E are of the same order, c/a >> 1. Then our problem is
p I

e Loaabon,

equivalent to that of a vertical beam with length 2¢ and thickness 2a

subjected to prescribed displacements (zero displacement in the axial

St

13




and 2U in the tangential directions at one end and the other end fixed).

2Ga c G 3Ez a
R = l'zj%’ta”h G ¢ (63)

and when c/a >> 1l,using the series expansion of tanh ) for X\ << 1, we

E
i a\?® & ya al
e eon ()[4 2 o (8)] >

which is the beam stiffness coefficient with a shear deTormation factor 6/5.

We have from (34)

get

EXACT VALUES OF STIFFNESS COEFFICIENTS FOR TWO LIMITING-
TYPE ORTHOTROPY CASES

Exact expressions for the stiffness coefficients may be obtained
in the two cases of limiting-type orthotropy by following the formul.a-
tion in 57 in the case of Ex = 0 and by following the formulation in [6]
in the case of Ex = o, These calculations are presented in an Appendix.

Our final results show that

- "
K =K |1 - &= tanh 9—‘:] (65)
E =0 ol o p
x
i % ] tanh an/p* "
K., . =K jl4pt'§ == (66)
Ex-co o ne0 % 1 - pi*(tanh on/p')/an
where
T 1
a=./3/(1-Vv" , an=(n+~z)v (67)

Fig. 3 shows plots of (65) and (66) for a wide range of p* These plots

show that the effect of ij on the stiffness is small when p* << | in the entire

range of the parameter u = G/“/ExEv .

14




In Fig. 3 we have also plotted the mean value of the closest bounds
when p = 10. For the range of p* shown in Fig. 2 the mean value of
Kuz and K{’2 differs from the exact values by less than 3.5% with the
maximum of this error corresponding to p* =~ 4., The plot in Fig. 3 shows
that the exact result for Ex =0 (b = ») may be used as an approximation
for K when p < 10, p* < 1, as in this range the curves for p = 10 and for

p = 0 are not distinguishable.

3 REFERENCES
? ' 1. Read, W. T., "Effect of Stress-free Edges in Plane Shear of a
' ‘\ Flat Body," J. Appl. Mech., 17:349-352, 1950.

2. Prager, W. and J. L. Synge, '""Approximations in Elasticity Based
on the Concept of Function Space,'' Quarterly of Appl. Math.,
5:241-269, 1947.

E 3. Nair, S.and E. Reissner, ''Improved Upper and Lower Bounds for
7 Deflections of Orthotropic Cantilever Beams, ' Int. J. Solids
i Structures, 11:961-971, 1975.

4., Nair, S. and E. Reissner, '""On Asymptotic Expansions and Error
Bounds in the Derivation of Two-Dimensional Shell Theory, "
Studies in Applied Mathematics (to appear).

: 5. Reissner, E., " A Contribution to the Theory of Elasticity of Non-
g ° Isotropic Materials (with Applications to Problems of Bending
) and Torsion),' Phil. Mag. Ser. 7, 30:418-427, 1940.

. 6. Hildebrand, F. B., '"On the Stress Distribution in Cantilever Beams, "
J. Math. and Phys., 22:188-203, 1943,

]

!
e
r
k
{
:




APPENDIX

a. The case E =0. We write the resulting stress strain relations
X

in the form

g =0, =E ¢ /(1 - v®), +=Gy. (A1)
x % vy : oo ¢

Proceeding as in [5] the equilibrium equations (1) are satisfied

by taking

wolm)s e s -yf!(x) (A2)

The second equations in (Al) and (A2) along with the defining

| relation ¢ =v then give as expression for v i
| B
1 -v3 1 1 |
v = = |- = y2 £ + yg(x) + h(x) (A3)
EY 2

Satisfaction of the boundary conditions v(x, +c) = 0 gives

g=0,. hes " § (A4)

s
2

and therewith

r
1 « v ¢ - y?
v E > | (A5)
y
.
The constitutive relation for + in (Al) in conjunction with (A5)
| and the defining relation y = u y + v then gives further
. ’ y X
o2 2 3
e (CX _y_)r,,
| e b 2 6 (A)
E y
upon taking account that u is an odd function of y.
We next obtain the differential equation for f by setting u(x, c) = U,
~ R
EL | it b e R i

16
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|
|
i

-_,.__v-,.:_u.

The remaining boundary conditions 7(+ a, y) = 0 determine the

solution of (A7) in the form,

cosh ,/3E /G(1 - V®) x/c
= 1- ¥

. (A8)

cosh J3Ey/G(l - v?) a/c

Use of (A8) in the expression for the stiffness coefficient,

K=[% r(x, c)ds/U (A9)
-a
gives
; 3E
K G(l - v [ A%
(K—)E . =ih e (3E i B tanh TI-Y?) % (A10)
o = oy

b. The case Ex == . In this case the constitutive relations (5) reduce

=0 ’ :C/E » = /Go All
s ‘y y Sy Yy=7 ( )

We consider uf(y) and v(x, y) of the form

)

-] [-<]
u = T un(y) s = B Xn(x)Yn(y) > (A12)

e n=0 n=0

Q

a

where P is a constant to be determined and, in order to satisfy the

conditions v(x, £c) =0,
Yn(-_tc) = 0 (A13)

Equation (A12) in conjunction with the constitutive relation for ¢

in (All) gives

f=£+G§[u'+X'Y]. (A14)
2a 'S n n n

&4




—y

where primes and dots denote differentiation with respect to the

respective arguments.

From (1) we have as an expression for ¢ ,
x

o =-J‘x 'r.ydx - (A15)

X
-a

Use of (A14) in (Al5) and satisfaction of the boundary conditions
ox(&a. y) =0, give

u* =X (-a) - X (a)]Y" /2a. (A16)
n n n n

As v is odd in x and even in vy, integration of (Al6) gives

g =z« X )Y /a . (A17)
n n n
From the second equations in (All) and (A12) we have

x .
e =E £ XY . (A18)
y Yoo B

Substituting for oy from (A18) and for ¢ from (Al4) with ur;

as in (Al7) into the equilibrium relation between oy and ¢ gives
P [EX Y +0C%X"Y 1=0 . (A19)
s y n n n n

The solutions of (A19) are taken in the form

= = i /
Yn cos any/c ’ Xn An sinh wa/GUnx/c (A20)

where, in order to satisfy (A13),

2n + 1
- — ﬂ
(!n 2 ’ (A21)

and wherec the constants An remain to be determined.

18
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We next use (Al4) to write for the boundary values of r

G

r(@a, y) =5 + E A Y y a c /—-Y a y
¥ i | o h —_— - inl L - ,
2a b n=0 " l. G Nn ¢ st G an c a R NG an c Cosnn c
(A22;
A formal expansion of P/2a

in a Fourier series using the ortho-

gonal eigenfunctions cosq y/c and setting r(a, y) = 0 then gives
n

= i - - - h / —_
An P Co smh‘V G onc Pl NG O'n CJ (A23)
n

From (Al4) and (A17), with Yn(c) = 0, we see that

P =% rix, c)dx . (A24)
-a

Integration of (A17) with Yn as in (A20) and substitution of the
resulting u in (A12) finally gives

— tanh,/E /Gy a/c
I G N
U:?.pc';:a {Hzac B P e :](AZS)
E P 3 ; -
y n=0 " n 1 -(tanh .\/Ey/Gana/c)/\ Ey/uona/c

The stiffness coefficient K _ follows from (A25) as in (66).

x
We note that the above calculation is similar to that in [6] so far

as the solution procedure is concerned. However, our boundary conditions

are different from those considered in [6].




ui1
uz2
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Figure 1. Values of stiffness coefficient bounds for isotropic materials with v = 1/3.
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Fig. 2.

Values of stiffness coefficient bounds for the

casc p = G/./lz.xE = 10 and v = 1/3, as a
function of p* = JG/F.y c/a.
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